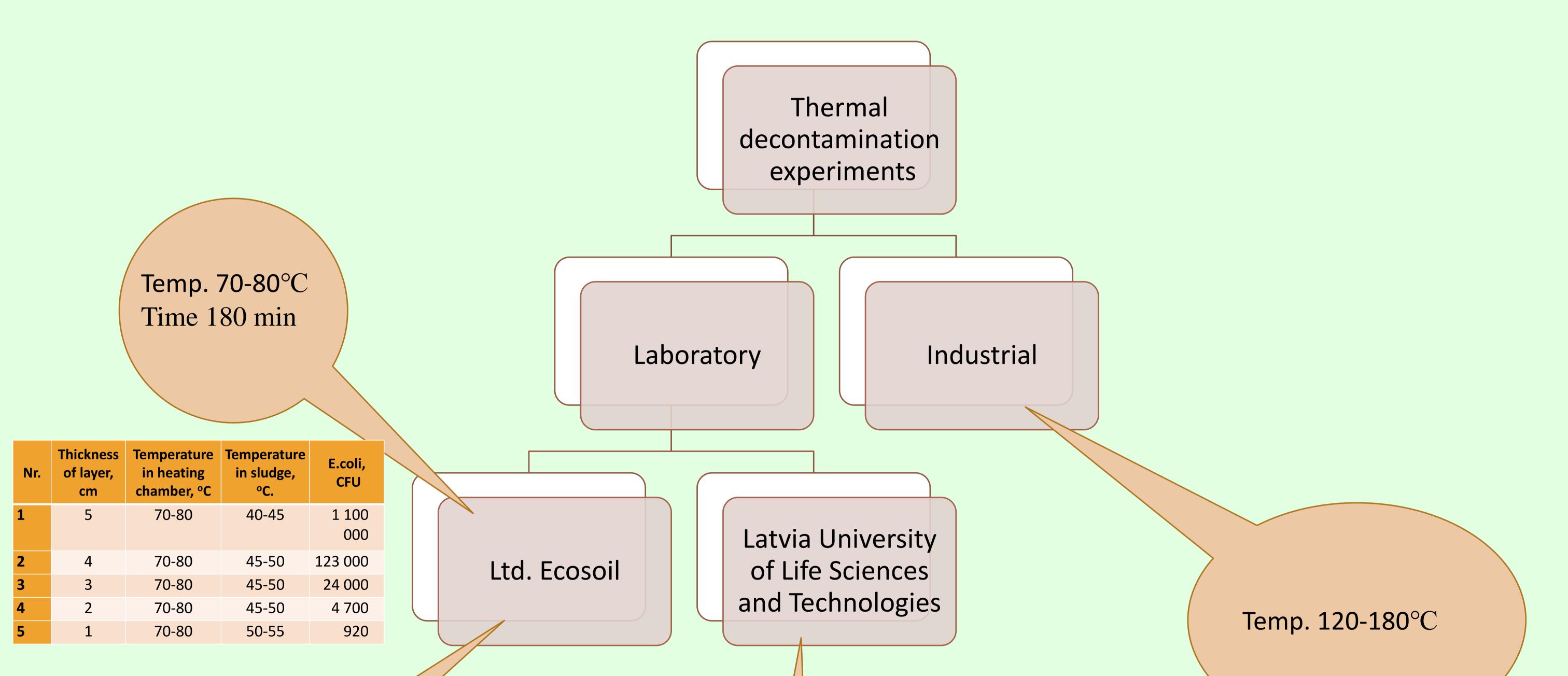


Thermal Decontamination of Sewage Sludge



L. Dubova^{1,}, N. Strunnikova², N. Cielava³, I. Alsina¹, O. Kassien⁴ and A. Bekker²

¹Latvia University of Life Sciences and Technologies, Faculty of Agriculture, Institute of Soil and Plant Sciences ² Ekosoil Ltd, 26 Academy street, Odessa, 65009, Ukraine ⁴Earth Revival, Ltd, Maskavas Str. 57-3, Riga LV-1003, Latvia

Every year a huge amount of sewage sludge is formed at municipal wastewater treatment plants. Sewage sludge contains a sufficient amount of biogenic elements and organic components, which characterizes them as possible raw materials for the production of organic fertilizers. However, direct incorporation of these sediments into the soil is impossible due to the fact that, in addition to useful organic and mineral components, they contain pathogens, viruses and helminth eggs.

The aim of the study was to optimise thermal disinfection conditions for preparing of safety sewage sludge fertilizer. Laboratory studies were carried out using sediments from wastewater treatment plants of some cities.

Temp. 140-150°C Time 15 min							
Nr.	Thickness of layer, cm	Temperature in heating chamber, °C	Temperature in sludge, °C.	E.coli, CFU			
1	5	140-150	70-80	<3			
2	4	140-150	70-80	<3			
3	3	140-150	75-85	<3			
4	2	140-150	85-90	<3			
5	1	140-150	85-90	<3			

					3	
	Temp. 70°C (inside layer) Time 15 min				4	
					5	
		Sewage sludge 1		Sewage sludge 2		
	Microorganism	Before	After	Before	Aft	.e

After

treatment

0

0

7.8 x 10⁵

Before

treatment

2.8 x 10⁴

0

 3.4×10^{6}

After

treatment

0

0

2.8 x 10⁵

Before

treatment

1.4 x 10⁵

Salmonella

enterica

 4.1×10^{6}

s, CFU g_{dw}⁻¹

E.coli

Salmonella spp

MAFAM

Thick-	Move-	1 st zone		2 nd zone		3 rd zone		Conta-
ness o layer, cm	ment rate, cm min ⁻¹	t,°C entrance	t,°C exit	t,°C entrance	t,°C exit	t,°C entrance	t,°C exit	mination E. coli CFU
2	5	20	110	120	160	150	80	0
2	10	20	110	120	160	150	80	0
2	5	20	110	120	160	150	90	0
3	10	20	110	120	160	150	80	0
	5	20	110	120	160	150	85	0
4	10	20	110	120	160	150	90	300
_	5	20	110	120	160	150	85	1500
5	10	20	110	120	160	150	80	3000

Conclusions

1. To ensure disinfection of the whole volume of sludge, it is necessary to maintain a temperature of 140 – 150 °C in the heating chamber, while the temperature reaches 70 – 80 °C

in the entire volume of sediment, which ensures reliable performance in 15 minutes disinfection.

- 2. Complete disinfection of sediment occurs at a layer thickness of no more than 5 cm. Reduction of the thickness of the sludge layer increases microbiological quality of material. 3. An increase in the duration of temperature exposure without an increase in its intensity seems to be irrational, since a further increase in the thickness of the layer unnecessarily slows down the process of disinfection of large amounts of sludge.
- 4. Based on laboratory studies, a conveyor thermal disinfection furnace was constructed at the municipal waste water treatment facilities in Odessa, including a heating zone, a disinfection zone and a cooling zone with established optimum temperature conditions 20 – 110 °C, 120 – 160 °C and 150 – 80 °C respectively and with an optimum sediment layer thickness of 3 cm and conveyor speed of 10 cm min⁻¹, providing complete disinfection of the sediment.

ACKNOWLEDGEMENTS. This research is being conducted based on agreement signed between SIA "Earth Revival" and SIA "ETKC" (Centre of Competence for Energy and Transportation) within the framework of project Nr. 1.2.1.1/18/A/001 co-funded by the European Regional Development Fund.